一维卷积、二维卷积、三维卷积具体应用
由于计算机视觉的流行,二维卷积的用途范围最广。因此,本文首先介绍了二维卷积,然后介绍了一维卷积和三维卷积的特定过程,并描述了它们各自的特定应用。
1。二维卷积
•图中的输入数据维度为14×14,滤波器大小为5×5。两者是卷积,输出数据维度为10×10(14-5 + 1 = 10)。
•以上内容没有引入通道的概念,也可以说,通道的数量为1。如果在二维卷积中输入的通道数将其更改为3,则输入数据维度(14×14×3)。由于卷积操作中过滤器的通道数必须与输入数据的频道数量相同,因此滤波器大小也将变为5×5×3。在卷积过程中,滤波器和数据分别沿通道方向进行了卷积,然后添加了卷积值,添加了3个数字值的10×10次,即执行3个数字值的10×10倍。
•以上是与1个过滤器数量的讨论。如果过滤器的数量增加到16个,即16个,大小为10×10×3,则最终输出数据维度将变为10×10×16。可以将每个过滤器分别执行卷积操作开yunapp体育官网入口下载手机版,并将每个过滤器分别固定在第三个方向上的每个卷积的输出(最终)。
•二维卷积通常用于计算机视觉和图像处理领域。
2。一维卷积
•图中的输入数据维度为8,滤波器尺寸为5。类似于二维卷积,卷积后的输出数据维度为8-5+1 = 48-5+1 = 4。
•如果过滤器的数量仍然为1,则输入数据的通道数量为16,即输入数据的维度为8×16。此处开yun体育官网入口登录app,通道的概念等于嵌入自然语言处理中,并且输入数据代表8个单词,每个单词的单词矢量尺寸为16。在这种情况下,数据仍然是5到5到5×5到5×5到5×5×5×5到5×5到5×5到5×。
•如果过滤器的数量为n,则输出数据维度将变为4×n。
•一维卷积通常用于序列模型和自然语言处理字段。
3。三维卷积
在这里开yun体育app入口登录,我们使用代数方法介绍了三维卷积,具体思想与一维卷积和二维卷积相同。
•假设输入数据大小为A1×A2×A3,通道号为C,并且过滤器大小为
f,即,滤波器尺寸为f×f×f×c(通道的尺寸通常不写),并且过滤器的数量为n。
•基于上述情况,三维卷积的最终输出为(a1-f + 1)×(a2-f + 1)×(a3-f + 1)×n。该公式对于一维卷积和二维卷积仍然有效,只有通过删除无关的输入数据维度就足够了。
•三维卷积在医疗领域(CT影响)和视频处理场(操作和性格行为的检测)通常使用。